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Abstract. Using the Monte Carlo technique we simulated single steps on Kossel-type 
crystal surfaces under equilibrium conditions up to the temperature region where statistical 
theories excluding overhanging step edge (ledge) configurations are questionable. We 
varied the ledge length between 40 and 960 units leading to average maximal step widths up 
to 40 units, so reaching dimensions observable with modern electron-optical techniques. 
We investigated jump and pair frequency distributions of the ledge after an equilibrium 
state was reached by direct tracing of its successive paths over the surface. The distributions 
were compared with those of an analytical low temperature step model. Hence the 
‘measured’ distributions have to represent an average equilibrium distribution. The 
expected probability distributions are exponential and the sequence in the simulation 
introduces a dependence between successive samples. To be able to use statistical tech- 
niques in this case we developed criteria for the equilibrium distribution, the independenq 
of successively sampled ledges and the minimal required ledge length. 

1. Introduction 

For the development of crystal growth theories knowledge of the structure of the crystal 
surface is very important. This is easy to see, because this structure determines 
the capability of the crystal to incorporate particles from the parent phase, i.e. the 
growth rate. For the sake of simplicity, in crystal growth theories the crystal is often 
assumed to be ‘simple cubic’ and composed of cubic blocks or units. These are 
identified with the atoms or molecules of the crystal. From a more general point of 
view, we may consider these units to correspond with the filled cells of an infinite 
three-dimensional lattice of cells. The boundary between the filled and empty cells, the 
interface, represents the surface of the crystal. 

The state of the surface depends on the interactions between the (particles in the) 
cells and the temperature. Here we consider only nearest-neighbour interactions 
between filled cells. We use an interaction parameter w, inversely proportional to the 
absolute temperature. At zero degrees Kelvin the surface is perfectly flat. At higher 
temperatures the surface becomes gradually rougher. Finally, at the critical tempera- 
ture the surface ceases to exist, as both phases become identical. 

On a real crystal surface steps may be present, for instance due to lattice imperfec- 
tions. We speak of a monatomic step when two adjacent regions on the surface have a 
height difference of one atom. The possibilities to apply statistical tests to the structural 
properties of the boundary between simulated terraces, the step edge or ledge, are of 
prime interest in this paper. In figure 1 stepped surfaces are shown at increasing 
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temperatures and it can be seen that with increasing temperature: (i) the roughness of 
the surface and the ledge increases; and (ii) the number of overhanging ledge configura- 
tions (cf figure 2) increases. At low temperatures (figure l(a)) the surface layer can be 
adequately described by a two-dimensional two-phase lattice cell system. 

Figure 1. Computer drawn surfaces for: (a) o = 1.4; ( b )  CO = 1.2; and (c) o = 1.0, where 
o CC T' and Tis the absolute temperature. The figures show that the surface and the ledge 
become rougher with increasing temperature. In (c) ledge overhangs can be seen. 

Upon introducing the solid-on-solid constraint in the two-dimensional lattice 
system, the BCF step model (Burton et af 1951) results. In this model: 

(i) one phase is completely filled; 
(ii) the other phase is completely empty; and 

( 5 )  ledge overhangs are not allowed. 
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Figore 2. Top view on a surface in the two-dimensional simulation model (cf figure 1). The 
full line represents a ledge. One of the terraces is indicated by dots. ( U )  Part of a ledge with 
successive jumps of sizes 4,O and -3, contributing the pairs (.  ,4) ,  (4,0), (0, -3) and (-3, .) 
to the pair frequency distribution. (b) Part of a ledge with an overhang. Three successive 
jumps are shown with sizes 1,1 and 0, respectively. 

It can be seen in figure l(a) that this model describes the low temperature situation 
rather well. The ledge in the BCF model is schematized in figure 3. Following the ledge 
along the x direction, jumps of various sizes can be seen in the y direction. According to 
BCF, the probability ri of a jump of size i is given by: 

where 

= exp(-w). (2) 

(3) 

Successive jumps in the ledge are not correlated. So 
r . .  = 1.1. 

'1 1 I' 

where rij is the probability of finding a pair of adjacent jumps with sizes i and j ,  
respectively. 

!+q$J)- ; .  * . . . . . .  . . :  r - - . -  

. . . . . . . . . . .  . . . . . .  
< ' L '  - * ; 1 . . . . . . . . . . . .  

X 

Figwe 3. In the BCF step model part of the cells in the two-dimensional lattice are filled 
(indicated by dots in the figure). The step edge, parallel to the x axis, does not possess 
overhangs. Apart from the step length, the model is compatible with the one-dimensional 
simulation model; the figure shows a ledge of ledgth L = 12 with periodic boundaries 
(indicated by the broken lines). 
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As will be explained in the next section, we are able to generate series of stepped 
surfaces with the Monte Carla technique. Figures l(a), ( b )  and ( c )  show parts of such 
surfaces at different temperatures. It can be seen that the neglect of ledge overhangs is 
not allowed at higher temperatures. In our temperature region (1.4 > w > 1.0) the 
density of ledge overhangs increases exponentially from the order of the density of 
jumps with size i = 3 to i = 1 (van Leeuwen and Mischgofsky 1975, cf also figure 6). 
Therefore the BCF formalism becomes questionable, particularly in the following 
aspects. 

(i) Will the jump distribution still be described by equation (l)? 
(ii) Will the high density of ledge overhangs introduce correlation between jumps? 
In this paper we will investigate the possibility of applying the ,y2 test on data 

sampled by tracing successively simulated ledges to answer both questions. However, 
the expected jump distribution is exponential, and this causes the expected frequencies 
to be very low for high values of (i(. Further, due to the way we generate the stepped 
surfaces, it is necessary to check whether the ‘measured’ distributions really represent 
an average equilibrium distribution. 

Two more difficulties are encountered in applying theX2 test to our data. Equations 
(1) and (3) hold for a step of infinite length on an infinitely large surface. Obviously, we 
are restricted to the simulation of relatively small surfaces. Finally, successively 
sampled distributions must be independent. 

To overcome these problems, it was necessary in addition: 
(i) to scrutinize in some cases the contributions of all individual terms to the value 

(ii) to introduce two hypotheses concerning the equilibrium state of a ledge; and 
(iii) to simulate the BCF step model as a reference. 
We will return to the subject after a brief discussion of the simulation models. 

of x2; 

2. The simulation models 

2.1. Two -dimensional simulation model 

With the Monte Carlo technique a stepped surface can be simulated: units are added to 
the surface (created) and removed from the surface (annihilated) at random positions, 
according to rules that ensure that the configurations generated this way follow 
Boltzmann statistics (Gilmer and Bennema 1972). The execution of a creation or 
annihilation depends on the number of bonds of the particle and a random number. In a 
simulation experiment ne creations (and about the same number of annihilations) are 
executed. 

The stepped surface is represented by a matrix; the elements give the position of the 
units at the surface relative to a reference plane. Periodic boundary conditions are 
applied to give units at the edges of the matrix four neighbours also. The ledge is chosen 
to be parallel to the longer side of the matrix (cf figure 1). In this simulation model ledge 
overhangs are allowed. The path of the ledge is determined n, times per simulation 
experiment, i.e. at intervals of nJn,  creations. This yields the pair frequency distribu- 
tion Pij and the ledge overhang density h, defined as the average length of the ledge path 
in the reverse (i.e. -x) direction per unit step length (cf figure 2). 

We repeated a simulation experiment for a certain value of w several times. For the 
initial matrix of a new experiment we always took the final matrix of the preceding 
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experiment. The initial matrix of a new series of experiments generally does not have 
the right structure. After a transient period an equilibrium structure is obtained. This 
can be checked by the convergence of the data of surface properties, e.g. the surface 
energy. We only used data obtained after the equilibrium state was reached. 

Successively generated matrices are very much alike: they differ in the occupancy of 
one cell at the most. If the number n ,  of creations between two successive determina- 
tions of the ledge structure is small, the ledges are still very similar (only a fraction of all 
creations takes place at the ledge). This means that the observations used in applying 
the ,y2 test are not independent. Therefore, we have to make sure that a considerable 
difference between successively determined ledge structures exists: at each ledge 
position a large number of creations must have been executed. This can be achieved by 
choosing a high value for the number N of creations at the step per unit step length in 
each interval: 

N = &/L.  (4) 
Moreover, the step length L and the total sample size P = n,L should be large enough. 
Since the computer time for an experiment is limited, we have to find minimum values 
for L and N for large enough values of P. 

2.2. One-dimensional simulation model 

In the one-dimensional simulation model (see figure 3) the ledge is represented by an 
array in which the elements give the position of the ledge. To obtain the pair frequency 
distribution the path of the ledge is now followed over its whole length. In this model 
ledge overhangs cannot occur. 

It is easy to see that this model is more ‘efficient’ than the two-dimensional 
simulation model because all events take place at the ledge. So similar experiments 
require much less computer time. We will use this model to find the minimum values for 
N and L for which the hypotheses concerning the distributions are not rejected. 

3. Hypotheses 

We have at our disposal the observed pair frequency distribution Pii of the number of 
adjacent jumps of sizes i and j .  From this the jump frequency distribution Pi can be 
derived: 

Pi = t(P,.  + P,i)  ( 5 )  
with 

and 

P,l = 1 Pi,. 
i 

(7) 

The periodic boundary conditions in the one-dimensional simulation model imply: 

p . = p .  
1. . I  



1832 C van Leeuwen and F H Mischgofsky 

The total number P of jumps of any size is given by: 

P = C P , .  (9) 
I 

Now the estimates fii and f i i j  of the probabilities pi  and p j j  can be obtained from the 
frequency distributions Pi and Pij 

f i i  = Pi/ P (10) 

f i i j  = Pijl P. (1 1) 
In our simulations the average step direction is conserved by the periodic boundary 

conditions. In equilibrium, because of symmetry considerations, the observed distribu- 
tions should not reject the following hypotheses: 

Hi : Pi = P - i  (12) 

(13) Hz : 11 11 1,-1 I . - ]  

and 
p . .  = p . .  = p - .  . = p - .  .. 

To check whether the experimentally obtained jump frequency distribution is compati- 
ble with the theory mentioned above (cf equation (l)), the following hypothesis is 
tested: 

H3 : Pi = ri (14) 
with ri(i = . . . , -1,O, 1, . . . ) known constants, because w is known. It is also interest- 
ing to investigate the occurrence of jump correlation in the two-dimensional simulation 
experiments (cf equation (3)). Therefore we test the hypothesis: 

Ii4: Pij = PiPj. (15) 

The hypotheses mentioned above can be tested using the x 2  test. 
Testing the hypotheses H1, H2, H3 and I& means testing the compatibility of a set of 

observed and expected frequencies. We will use the following theorem (Hoe1 1962). 
Theorem. If ol, 0 2 , .  . . , om and el,  e2,.  . . , e, are the observed and expected frequen- 
cies, respectively, of the m possible outcomes of an experiment that is performed n 
times, then, as n becomes infinite, the distribution of the quantity 

i = l  

will approach that of a x 2  variable with v degrees of freedom. v is dependent on the 
hypotheses tested. 

To test a hypothesis Ho with a critical region 0.05 (we will use this value in the 
following), we evaluate the quantity x 2  given by equation (16), taking care that all ei 
comply with the hypothesis Ho, and with Z ei = X oi. In the calculations we make sure 
that all expected frequencies exceed four. Then we determine the value of x&,5,v, which 
cuts off five per cent of the right tail of a x2 distribution with v degrees of freedom. If 
x > x 0 . 9 5 , ~ ,  the hypothesis is rejected at a level A of over 95%, i.e. we state with a 
confidence of more than 95% that the hypothesis is not true. With every x 2  goes a ~ 2 , ~ .  
We will present our results by giving values of the rejection levels A (Hi) rounded off 
upwards to the series of values 0.5-1-2.5-5-10-25-50-75-90-95-97.5-99-99.5 and 
100%. 

2 2  
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Of course the (decisive) power of the xz test increases with increasing P. As 
mentioned before, the expected frequencies have to exceed four. The shape of the 
distributions involved makes it impossible to meet this requirement, however large we 
make P. Therefore we add up categories, as pointed out below. 

For the hypotheses HI and H3 the expected frequencies can be denoted 
by . . . , e-i, . . . , eo, . . . , ei, e i+l ,  . . . . We now construct a new frequency distribu- 
tion: 

e L k , .  . . , e : , ,  . . , el, 

with 
-k  m 

I =-m i = k  
e!k= 1 ei, el,= 1 ei 

and 

e !  1 1  = e .  for Ji( < k, 
where k is defined as the maximal value of liI for which all e:  exceed four. For the 
hypotheses H2 and I€, the expected frequencies form two-way tables ed with --CO< 

i, j <CO. In an analogous way we construct a distribution ek with )il, ljl s k and for 
example: 

M O O M  .. 

e!  rk = 1 eij and eLk= 2 2 eij, 
j = k  r = k  j = k  

where again k is defined as the maximal value of both li) and ljl for which all e:, exceed 
four. 

It is now possible to test the hypotheses HI, Hz, H3 and &. The specification of o: ,  
e: and the number of degrees of freedom in terms of k are given in table 1. 

Table 1. Table of observed frequencies 0:  and expected frequencies e: together with their 
number of degrees of freedom v for the hypotheses H mentioned in the text. 

4. Results 

4.1. The hypotheses of symmetry 

4.1.1. One-dimensional simulation model. A number of 2500 exchanges per unit step 
length turned out to be sufficient to reach a steady state. Generally, we then used for 
each run values of P > 48 000. This implies k 3 6 for one-way tables and k 3 3 for 
two-way tables. 
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As mentioned before, restrictions are laid upon the simulation and data sampling 
program with respect to the choice of N and L to obtain significant information. 
Moreover, in a well conducted experiment at least the hypotheses HI and H2 have 
to be valid. Therefore we start testing these hypotheses for different values of N 
and L. 

Table 2 shows a decreasing rejection level for increasing N at a constant value 
L = 320 for the length of the step. We conclude that for this step length N = 0.3 is 
certainly too low, whereas N = 6.3 is sufficient. From table 3 it follows for N = 6.3 that 
L = 160 is somewhat short, but L 3 320 is sufficient. Interpreting these tables, one 
should remember that HI and H2 are hypotheses of symmetry. So rejection of HI and 
H2 leads to the conclusion that symmetry is absent. However, it might also be 
concluded that the x 2  test is applied to inappropriate data, e.g. because of the 
dependence of the distributions of successively sampled ledges. The fact that H1 and H2 
are no longer rejected for high enough values of N and L indicates that the latter 
conclusion is preferable. So we conclude that the influence of N and L is sufficiently 
eliminated for N > 6 and L > 300. 

Table 2. Some experiments with steps of lengths L = 320 for o = 1.0. The values of the 
rejection levels indicate that the test samples are independent for N P ~ .  

N 0.3 6.3 31.3 
~ o - ~ ~ , / L  1.25 1.25 25.0 
n C  100 2000 10 000 
A W i )  ( y o )  100 90 25 
A 0%) ( y o )  100 1 10 
~ o - ~ P  1280 64 256 

Table 3. Some experiments with steps of various lengths for o = 1.4, n,/L = 1250 and 
N =  6.3. It can be seen that a minimal step length is required to ascertain that the samples 
represent an average equilibrium distribution. 

L 160 160 320 320 480 

A W i )  WO) 973  50 50 75 25 
A 0%) ("10) 97.5 50 10 50 25 
~ o - ~ P  32 32 64 64 96 

1 0 - ~ ~ ,  1 1 2 2 3 

In table 4 we show the results of eight experiments for w = 1-0 and 1.4 which fulfil 
these requirements. In all cases A (H,) and A (H2) remain below 90%, i.e. the hypoth- 
eses HI and H2 are not rejected at the 0.95 level. Figure 4 gives an impression of 
successive step profiles for w = 1.0 and L = 320 with N = 6 .  It shows changing 
sequences of jumps, whereas the general form of the ledge remains quite unchanged. 
Figure 5 gives an impression of the changes in shape of successive step profiles when 
N = 250. 

4.1.2. Two-dimensional simulation model. A number of 4X lo5 creations at the 
surface turned out to be amply sufficient to reach a steady state. We always used values 
of P 2 4400. This implies k 3 4 for the one-way tables and k 2 2 for the two-way tables. 
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Table 4. Results of the experiments for o = 1.0 and o = 1.4 from the one-dimensional 
simulation model with L > 300 and N > 6. 

~ 

Model One-dimensional 

0 1.0 1.4 

L 320 480 3 20 480 

N 
io-%, 

6.3 31.3 12.5 6.3 6.3 
4 80 6 4 6 

Run order 1 2 1 2 3 1 2 1 
k for HI, H3 8 9 8 8 9 6 6 6 
k for H2, 4 4 4 4 4 3 3 3 
~ o - ~ P  64 256 48 48 48 64 64 96 
(Po-p lo ) (p lo ) - l  x 100% +Os4 -1.1 -0.9 -0.6 -1.2 -1.2 -1.1 -1.0 

12.4 5.3 8.8 12.8 4.8 5.0 7.1 2.4 
32.9 42.6 51.8 58.1 37.5 22.2 29.3 25.4 
6.1 29.9 27.1 6.3 12.6 32.3 22.4 16.3 

46.8 66.7 64.4 71.6 50.6 31.5 23.5 41.0 

90 25 75 90 25 50 75 25 
1 10 50 75 5 10 50 25 

50 100 100 50 90 100 100 99 
10 75 75 75 10 50 5 75 

Figrve 4. Successive patterns, obtained during an experiment for o = 1.0, L = 320 and 
N = 6 in the one-dimensional simu!ation model. In order to see the jumps more clearly the 
vertical axis is expanded by a factor 2.5.  
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Figure 5. Time-dependent development of step profiles at intervals of 8 x lo4 executed 
creations: L = 320. o = 1.0 and N = 250. 

To evaluate N it is necessary to estimate the fraction 6 of the total number of 
creations that takes place at the step. The estimated value of N exceeds six in all our 
experiments (see appendix). To keep computer time within reasonable limits, we took 
L = 40. Nevertheless, the values of the rejection levels A (HI) and A (H2) did not exceed 
95%. So the hypotheses HI and H2 are not rejected at a critical region of 0.05 (cf table 
5) .  

Table 5. Results of the experiments for w = 1.0 and 1.4 from the two-dimensional 
simulation model with L = 40 and N = 6 (cf appendix). 

Model Two-dimensional 

0 1.0 1.4 

L 40 40 

25 25 
4 1.5 

~ ~~~ 

Run order 1 2 1 2 
k for HI ,  H3 6 6 4 4 
k for H2, H4 3 3 2 2 
I O - ~ P  11.1 10.7 4.4 4.4 

(Po-Pro)(Pro)-' x 100% -5.7 -2.6 -2.3 -2.8" 

10.3 5.7 
46.0 34.4 
62.3 63.0 

161 173 

2.6 5.9 
11.7 16.9 
9.7 6.4 

12.0 17.4 

90 75 
95 75 

100 100 
100 100 

50 90 
25 75 
97.5 90 
50 75 

a The largest deviation here is I(P, -Prl)/Pro~ x 100% = 3.1%. 
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4.2. Jump frequency distribution 

4.2.1. One-dimensional simulation model. For w = 1.0 hypothesis H3 is rejected in two 
of the five experiments; for w = 1-4 it is rejected in all three experiments (see table 4). 
So there is a strong indication that the hypothesis H3 as a whole is not true. Inspection 
of Pi and Pri showed large absolute deviations of the expected frequencies for small 
jumps ( l i (=O,  1). Except in one case, always Po<Pro and P l > P r l ;  the maximal 
absolute deviation always occurred for i = 0. However, in this case the relative 
deviation is rather small: P0-Pr0C0.012 Pro (see table 4). Moreover, for li1>2 the 
deviations between the expected and observed frequencies show to a reasonable extent 
a random pattern. Apparently, the hypothesis k3 is rejected because of small systema- 
tic relative deviations between Pi and Pri for small values of i ,  and large but random 
relative deviations for higher values of i .  Therefore it does not seem justified, in spite of 
the results of the test mentioned above, to reject the hypothesis H3. This would be to 
favour alternative hypotheses, which are of no interest here. We conclude that ti and ri 
agree quite well: the absolute deviation never exceeds 0.012ro (cf figure 6). 
4.2.2. Two-dimensional simulation model. From the four experiments in table 5 ,  H3 
was rejected only once for w = 1.4 at the critical region 0.05. As ledge overhangs tend 
to split up large jumps into smaller ones, P1 is much larger than Prl for low values of w. 

d 

2 x 1 o - ’ i  

W 

Flgwe 6. Jump density distribution and overhang density dependence on o. - r i (@) ,  
BCF statistics (equation (1)); 0 Bi(w), one-dimensional model with L = 320; A h ( o ) ,  
two-dimensional modelwithL = 40;-----h(o),beststraightline(cfBurtonetal 1951). 
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For example, for w = 1.0 we find (PI -Prl)/Prl = 0.03. This results in a decrease of the 
other Pi, especially Po (see table 5 and figure 7). We can conclude that Bi and r, agree 
within a maximal absolute deviation of about 0.03ro for w = 1.4 and 0.06ro for w = 1.0. 

0 2 L 6 
I 

ffignre 7. This plot of the jump density distribution for w = 1.0 (U and X )  and w = 1.4 (0 
and +) shows the influence of a short step length (L = 40) and overhangs on p , .  - ri, 
BCF statistics (equation (1)); 0 and 0 $,, one-dimensional model; + and x $,, two- 
dimensional model. 

4.3. Jump correlation 

4.3.1. One-dimensional simulation model. The rejection level for & remains in all 
experiments below 75%, so H4 is not rejected (see table 4). The contributions to x 2  are 
randomly spread over all terms. 

4.3.2. Two-dimensional simulation model. Table 5 shows that there is no jump 
correlation foro = 1.4. Foro = 1.0, however, the hypothesis H4 is rejected. We found 
that jump pairs ( i j )  with ( i )  = bl= 1 strongly (about 50%) contributed to the value of ,y2. 

Table 6. An example of the matrix A with A,, = (Pi,-Pr:r;)/Pr;r; X 100% for w = 1.0, 
L = 40 and N =  6 (see appendix) in the two-dimensional simulation model. The cursive 
numbers clearly show the influence of overhangs on the correlation P,, for sign i =sign j .  

\ -3 -2 -1  0 1 2 3 

-3 +O.I +O*2 +O.l -0.0 -0.0 -0.1 +0.4 
0.0 -2 +O.8 +0.5 +O*Z -0.0 -0.1 -0.3 

+0.4 +0.4 +0.3 -0.1 0.0 -0.1 -0.1 -1 
-0.2 -0.1 0.0 -0.1 0.0 -0.1 -0.1 0 

0.0 1 -0.1 +0.1 -0.1 +0.1 +0.5 +04 
2 -0.4 -0.4 0.0 -0.1 +0.4 0.0 +0.1 
3 +O.1 -0.2 -0.2 -0.2 +0.2 -0.1 -0.4 
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It seems trivial to assume that the presence of jump correlation at higher temperatures 
is due to the ledge overhangs. For a given distribution of jumps, these increase the 
frequencies Pjj with sign i equal to sign j and decrease the frequencies Pij with sign i not 
equal to sign j (cf figure 2). Indeed, this is strongly confirmed by our data. 

Additional evidence for our assumption can be found in table 6 ,  where we have 
given the relative deviation A, of Pij from Pr&: 

Comparison of A l l ,  A-l,-l with Al,- l ,  A-l , l  shows the influence of ledge overhangs. 
The latter terms are not affected by these overhangs and almost follow the BCF law. 

5. Conclusions 

The structure of a step edge (ledge) on the surface of a Kossel crystal was studied, the 
surfaces being obtained by using the Monte Carlo simulation technique. Information 
about the structural properties of the ledge was obtained by following its path over the 
surface. At higher temperatures overhanging ledge configurations appeared, the 
overhang density h increasing from 0.008 at w = 1.4 to 0.08 at w = 1.0 (cf figure 6) .  To 
determine the influence of the overhang density on the jump density distribution and 
the pair density distribution we applied the x 2  test. 

To check the method, we also applied the test to a one-dimensional simulation 
model, because this model is correctly described by the theory. Using two hypotheses 
of symmetry we found that the test could be applied, provided: (i) the step is long 
enough (L > 300); and (ii) the number N of creations at the step between successive 
samples exceeds six. In spite of the rejection of hypothesis H3: pi  = ri, we found a 
reasonable correspondence between the simulation results and theory (cf figure 6 ) .  A 
short step length ( L  = 40) results in an increased number of short jumps and a decrease 
in the number of large jumps, relative to the values predicted by the theory for an 
infinite step (cf figure 7). In accordance with theory, the hypothesis of absence of jump 
correlation is not rejected. 

In the two-dimensional simulation model we could only choose a rather short step 
length ( L  = 40), because of the computation times involved. Nevertheless, the hypoth- 
eses of symmetry were not rejected when the sample spacing ( N )  was large enough. In 
this model, the occurrence of large jumps is not only reduced by the short step length, 
but also by the presence of overhangs (cf figure 7). We concluded that generally pi  = ri 
within a maximal absolute deviation of 0.03 ro for w = 1-4  and 0-06 ro for w = 1.0. For 
w = 1.4 hypothesis H4 is not rejected, i.e. there is no jump correlation. For w = 1.0, 
however, H4 is rejected. We found that terms derived from jump pairs ( i , j )  with sign i 
=sign j (especially for i , j  = * 1) contribute most to the value of x 2 ,  i.e. jump 

correlation in the two-dimensional simulation model results purely from the existence 
of overhangs. 
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Appendix. Calculation of N in the two-dimensional simulation model 

In the foregoing it appeared necessary to determine the number of executed creations at 
the step during the interval between two measurements of the ledge properties. In the 
two-dimensional simulation model only the number of executed creations on the 
surface is known. Therefore we must estimate the fraction 6 of all executed creations 
that take place at the ledge. We approximate 6 by the ratio of the creation flow to a 
ledge and the sum of the creation flows to a stepless surface and a ledge. The creation 
flows are given in equations (4) and (23) of Gilmer and Bennema (1972). A numerical 
value for the creation flow to a stepless surface can be obtained from the concentration 
of surface sites which can be created (given in table 2 of the same paper) and the 
kinetical coefficients (equations (2) and (3) of van Leeuwen and Mischgofsky 1975). 
The creation flow to a ledge can be estimated by assuming the concentration of kink 
sites to be 20%. For w = 1-0 we find 6 = 0.16 for a step of length L = 40 on a 20 X 40 
surface. Taking a test sample of such a ledge every 1000 creations implies N = 256 = 4. 
Because of the fact that for w = 1.0 about 30% of the samples are omitted during a run, 
we can estimate that N = 6. This also holds for w = 1.4 as the creation flow towards the 
stepless surface decreases strongly with increasing value of w. 
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